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SUMMARY

Experimentally determined data on the magnitude of wall pressure
fluctuation levels for turbulent boundary layers are presented in this
report. The measurements were made on the sldewall of the Trisonic
One-Foot Tunnel of the Douglas Aerophysics Laboratory which was
modified to eliminate background noise in the test stream normally
associated with chcked flow over the pressure control velve. A small
condenser microphone was used which limited measurements to frequencies
below 88,000 cps, a range to which practical vehicle structure can
respond. Results are presented for the zero pressure gradient or flat
plate boundary layer on an insulated surface for free stream Mach
numbers of .43, .59, .86, 1.41, 1.80, 2.52 and 3.46 and Reynolds number
based on momentum thickness in the range 14 x lO3<<R0<150 x 103. These
results are in agreement with other measurements at subsonic speeds and
indicate a spectral distribution which is flat to values of non-dimen-
sional frequency f&*/uxl= 0.45 and a trunceted fluctuation level of

ie/ To': 2.8. At supersonic speeds, the spectra also are flat to
values of fe/um)::o.lS with truncated overall levels of prTgf T

~1.2 to 1.7. At Mach 3.46, the effects of various strength shock
waves impinging on the boundary layer, surface roughnesses and surface
pressure gradients on the magnitude of wall pressure fluctuation eare
shown to increasse the truncated levels by factors of 5 to 20 times the
level in the undisturbed boundary layer.

* Douglas Alrcraft Company, Inc.
A Bolt Beranek and Newman Inc.



INTRODUCTION

The high speed motion of a vehicle through a gas is resisted by
the action of viscosity. This resistance is generated in a thin region
near the surface of the vehicle, the boundary layer, in which large
mean velocity gradients normal to the surface exist. Under conditions
of major interest, the Reynolds number is large enough so that the
motion within the boundary layer is turbulent; i.e., unsteady or fluc-
tuating velocities of a random nature are superimposed on the mean
motion. These fluctuating velocities produce pressure fluctuations
which are evident as sound associated with the turbulence and as a
fluctuating force acting on the vehicle surface. The vehicle designer
is greatly interested in the magnitude of this fluctuating force since
it can cause vibration of the structure which can contribute to fatigue
failure and generate sound within the vehicle (ref. 1). Hence the
designer must provide proper treatment for protection of passengers
and equipment. The problem is particularly important for designers of
advanced vehicles such as supersonic transport aircraft (ref. 2) and
manned spacecraft.

The mechanism of noise generation for turbulent flows over rigid
surfaces has been studied theoretically by Curle (ref. 3) and Phillips
(refs. 4 and 5) while theories on noise radiated by flexible flat
plates excited by turbulent boundary layers have been presented by
Corcos and Liepmann (ref. 1), Ribner (ref. 6) and Kraichnan (ref. 7).
Dyer (ref. 8) and Tack and Lambert (ref. 9) have considered the
response of plates and bars subjected to boundary layer pressure fluc-
tuations using the approach suggested by Lyon (ref. 10).

All of these theoretical treatments require empirical information
on the characteristics of the pressure fluctuation field. Most labora-
tory measurements of wall pressure fluctuation characteristics have
been made on smooth, rigid surfaces. The measurements of Willmarth
(ref. 11) and Harrison (ref. 12) were made at subsonic speeds for the
case of zero pressure gradient flow (flat plate) on a smooth surface.
Skudrzyk and Haddle (ref. 13) made measurements at subsonic speeds on
the wall of a water tunnel and on a rotating cylinder with both a
smooth and rough surface (sandpaper type roughness). Kistler and Chen
(ref. 1b) and Williams (ref. 15) measured the fluctuating pressure
field on smooth surfaces with zero pressure gradient flow at supersonic
speeds. Unfortunately for the vehicle designer, the results show a
rather wide variation - particularly between the subsonic and super-
sonic measurements. To further complicate the designer's dilemma,
measurements made in flight by Von Gierke (ref. 16), Mull and Algranti
(ref. 17, 18), McLeod and Jordon (ref. 19) Hilton et.al. (ref. 20),
Shattuck (ref. 21) and McLeod (ref. 22) indicate that it is not
possible generally to relate the laboratory results directly to flight



measurements. Thus the present experimental program of wind tunnel
measurements was initiated in order to: (1) examine the Mach number
effect on wall pressure fluctuatlons for zero pressure gradient flows
at both subsonic and supersonic speeds in a single experimental set-up;
and (2) introduce into the laboratory experiments some of the elements
of non-uniform flow such as surface roughness, pressure gradient and
shock wave impingement which exist for practical vehicle configurations
on which flight measurements were made.

The need for improved information on boundary layer pressure fluc-
tuations increases in urgency with the advent of supersonic transport
vehicles since the dynamic pressure corresponding to crulse (at 60,000 -
70,000 feet altitude) is greater by a factor of two to three than exist-
ing subsonic transports (at 30,000 feet altitude). The location of
critical regions of high fluctuation levels may require special treat-
ment for protection of vehicle structure, equipment and passengers.

With these applications in mind, the emphasis was placed on obtaining
measurements in the frequency range to which a structure can respond.

A small condenser microphone was used as the pressure transducer,
thereby elimineting the problems of vibration sensitivity that are
encountered with piezoelectric transducers. Although the use of such
a transducer (effective surface diameter of approximately 0.13 inch)
meant that the investigation was restricted to the relatively lower
frequency range, and that no direct measure of overall pressure fluc-
tuation level could be obtained, it was believed that the results would
be useful in the frequency range of primery interest in practical
vehicle design problems.

SYMBOLS
A area of microphone diaphragm, in2
a speed of sound, ft/sec
b constant in eq. C2, dimensionless
Cp skin friction coefficient = 7b/q, dimensionless
da element of area, in2
D diameter of microphone diaphragm, inches
De effective diameter of microphone diaphragm, incnes
f frequency of pressure fluctuations, cps

F(f) ©pressure spectral density
H form parameter = &%/@, dimensisnless



Bessel function of the nth order, dimensionless
Mach number = u/a, dimensionless
. 2
steady pressure, lb/in
pressure amplitude of a plane progressive wave, lb/in2
fluctuat?ng pressure, lb/in2 or db re 2.9 x 1077 lb/in2(.OOO?

microbar

increment of overall pressure fluctuation level for limited
frequency range

Prandtl number, dimensionless

dynamic pressure, lb/in2

T -T
temperature recovery factor = —Erlifrjfi———, dimensionless
te e

radius in polar coordinates, inches

Reynolds nmumber based on momentum thickness, dimensionless
helght of roughness element, inches, or time, seconds
temperature, deg. Rankine

velocity of fluid, ft/sec

output of microphone, volts

longitudinal distance, parallel to tunnel centerline, with x = 0O
at center of sidewall insert, inches

longitudinal distance along centerline of pressure gradient
generator, inches

transverse distance, normal to sidewall, with y = O at the wall,
inches

distance from centerline to contour of pressure gradient genera-
tor, dinches

angle between tunnel centerline and shock generator surface,
degrees

ratio of specific heats, dimensionless, (Y= 1.k4)



5] boundary layer thickness, defined as y at u/ue = 0.99, inches

o* boundary layer displacement thickness, inches

e boundary layer momentum thickness, inches

A wave length, inches

u absolute viscosity, lb-sec/ft2

vV angle between tunnel centerline and expansion generator surface,
degrees

p density, lb-sec2/f'tlF

0(r) sensitivity function, volts/in2 - lb/in2
Jo sensitivity constant, volts/in2 - lb/in2
To  wall shearing stress, 1b/1n°

w angular frequency, rad/sec

11/ angle in polar coordinates, degrees
SUBSCRIPTS
e condition at edge of boundary layer
i incompressible conditions
n condition at microphone; i.e., n =1, 3, 4, 5, 7, 8, 11
t stagnation condition
w condition at wall
Y condition at y inches from wall
S freestream condition
SUPERSCRIPT

' reference condition



APPARATUS AND TEST PROCEDURE
Wind Tunnel

The measurements were made on the sidewall of the Trisonic One-
Foot Tunnel of the Douglas Aerophysics Laboratory. The tunnel is a
blowdown-to-atmosphere facility operating over the Mach number range
0.2 to 3.5. Mach number in the tunnel 1s generated by fixed nozzle
blocks at supersonic speeds. Speeds in the subsonic and transonic
range are controlled by changing the area of a second throat downstream
of the test section. Design features of the tunnel are shown in
Figure 1. The tunnel is particularly suitable for research in boundary
layer pressure fluctuations because it was designed with an acoustic
muffler in the stilling chamber (ref. 23) which reduces background
noise and because the choked second throat prevents sound propagation
upstream fram the diffuser even at subsonic speed in the test section.
Thus, 1t provides the inherent advantages of high test stream dynamic
pressure with low background noise. The facility was specifically
modified for this study to eliminate background noise normally associ-
ated with choked flow over the control valve. By connecting the 8,000
ft3 reservoir of the tunnel with an adjacent 26,000 ft3 reservoir, it
is possible to operate with stagnation pressure equal to reservoir
pressure thereby completely eliminating choked valve noise. The piping
modification required to accomplish this is shown in Figures 2 to k.
A hydraulically operated butterfly valve was installed in the 18-inch
line connecting the two reservoirs. Both this 18-inch valve and the
12-inch control valve were operated simultaneously as on-off valves for
the boundary layer pressure fluctuation tests. Corrections for the
slight decay in stagnation pressure resulting from the above mode of
operation were made during data reduction. Further detalls concerning
the wind tunnel may be found in ref. 35.

Boundary Layer and Static Pressure Measurements

The measurements were made on a 1l4.5-inch cireular insert in the
slde wall of the test section. The turbulent boundary layer developed

naturally for approximately eight feet upstream of the measuring station.

Pressure distributions along the sidewall were measured with Statham
5-psid differential transducers (using a vacuum reference)., Boundary
layer total pressures were measured using a 3-tube rake {Figure 5}.
Pressures were sensed by Statham 15-psid differential transducers. The
position of the rake was varied by means of a traverse gear driven by
a 28-volt Globe dec motor and was measured by a shaft position encoder
with a resolution of 36,000 counts per inch of rake travel.

Static and total pressure data were reduced to absolute pressures
on an IBM 1620 computer using appropriate transducer calibration factors



and ambient pressures. The static pressure data was also reduced to
Mach mumber by means of the isentropic relationship between statlc and
stagnation pressure. The boundary layer total pressures were reduced
to local Mach numbers and velocities by the isentropic static-to-stagna-
tion pressure ratio at subsonic speeds and by the Rayleigh pitot formula
at supersonic speeds. In both cases, the local Mach number was calcu-
lated using the static pressure taken from the wall pressure orifice
nearest to the boundary layer rake which was unaffected by the presence
of the rake. To calculate the velocity, constant total temperature
across the boundary layer was assumed.

The local-to-freestream velocity ratio within the boundary layer
was plotted as a function of distance fram the wall on a Benson-Lehner
Electroplotter, and values of & were determined by setting y = & at u/ue
= .99. Typical boundary layer velocity profiles are shown in Figure 6.
Values of other boundary leyer parameters were determined as shown in
Appendix A.

Fluctuating Pressure Measurements

Boundary layer pressure fluctuations were measured by a series of
flush-mounted Bruel and Kjaer Model 4136 condenser microphones installed
in a second insert in the sidewall of the wind tunnel. Figure T shows
the locations of the microphones and an accelercmeter on the test plate.
Figure 8 is a block diagram of the acoustic data acquisition system.
During the first series of acoustic tests, the microphone signals were
recorded in the FM mode to provide data over the frequency range from
0.0l to 10 keps. During the final series of tests, the microphone
signals were recorded in the direct record mode to provide data over
the frequency range from 0.1 to 100 keps. Most of the acoustic data
presented in this report were cobtained during the final series of tests.
Further information concerning the acoustic data acgquisition instrumen-
tation and procedures, including discussions of calibration procedures
and microphone vibration sensitivity, is given in Appendix B.

A typical wind tunnel run lasted for approximately 15 seconds,
including tunnel starting and shut-down time. The frequency analyses
of the acoustic data were accomplished by re-recording the data on a
multichannel continuous loop of approximately 10 seconds duration.
The data on a loop thus represented that portion of the wind tunnel
run during which essentially steady-state conditions prevailed.

In Figure 9 are block diagrams of the acoustic data processing
systems that were used for the direct and FM recorded data. The FM data
from the first series of acoustic tests were reduced in one-third octave
vands of frequency. The direct record data fram the final acoustic
tests were reduced in octave bands of frequency. For convenlence of



comparison, the one-third octave band levels have been converted to
octave band levels, and all the acoustic data in this report are pre-
sented as octave band levels.

Corrections were applied to the raw data to account for record and
playback characteristics of the acquisition and analysis system, for
the rescnance of the condenser microphone at reduced ambient pressures,
and for the finite size of the microphone diaphragm. Further Informa-
tion concerning the derivation and form of these corrections is given
in Appendices B and C.

Model Description

In addition to the two sidewall inserts used for static and fluc-
tuating pressure measurements, other items of hardware are noteworthy.
Two-dimensional shock wave and pressure gradient generators were pro-
vided as shown in Figure 10. The shock generator spanned the height of
the tunnel and was simply rotated about one of two pivot points to
change the shock angle between 0° and 10°. It was possible to obtain
expansion angles from 0 to 50 also with the same arrangement using the
forward pivot point. The adverse pressure gradient generator was
originally designed by the method of characteristics to provide a
change in Mach number of about -1.0 in eight inches along the sidewall
using the contour Yp = 0.00551 x§ located three inches from the wall.
To eliminate choking in the channel betwcen the contour and the wall,
the generator was moved farther from the wall and the resulting change
in Mach number was then equal to -0,8 in four inches. (See the section
entitled "Measurements" for other ramifications of this problem.)

A number of roughness elements were fabricated for investigation
of the effects of local perturbations on tunnel sidewall boundary layer
pressure fluctuation levels. These are shown in Figure 11. Four
thicknesses of two-dimensional roughness between 0.012 and 0.129% inch
were provided and a second 0.125-inch strip was rounded on the leading
edge for comparison with the square leading edge. All were one inch
in width. A simulated half-scale window (Figure 11) with a thickness
of 0.050 inch was also provided.

Test Procedure

The supersonic test section was used for both subsonic and super-
sonic investigations. Clear tunnel measurements of turbulent sidewall
boundary layer pressure fluctuation levels, static pressure distribu-
tions, and boundary layer velocity profiles were conducted at subsonic
Mach numbers of 0.43, 0.59, 0.77,and 0.86 and at supersonic Mach
numbers of 1.41, 1.80, 2.52, and 3.46. Effects of shock wave boundary



layer interaction, surface roughness elements, and favorable and adverse
pressure gradients on pressure fluctuation level were measured at Mach

3.46,

All pressure fluctuation measurements were made with tunnel stagna-
tion pressure equal to reservoir pressure. Stagnation pressure was
maintained nearly constant by using a 34,000 f£t° reservolr connected to
the stilling chember by two hydraulically operated butterfly valves -

a 12-inch diameter valve normally assoclated with the tunnel and an
18-inch diameter valve. These valves were used as on-off valves for
the pressure fluctuation tests. The resulting variation in stagnation
pressure during these tests varied fram £ 6% at Mach number 0.30 to

% 12% at Mach 0.86 and t 1.5% at Mach 3.56. Tunnel Mach number was
maintained constant during all runs, which normally lasted for 15
seconds. The deviation in sound pressure level as a result of the
stagnation pressure change was not readily discernidle. Thus, the
pressure fluctuation level is referred to average dynamic pressure dur-
ing a run. Static pressure distributions and boundary layer velocity
profiles were measured using normasl tunnel operation at constant
stagnation pressure. For these runs, Reynolds mumber was maintained
nearly constant at a value equal to the average value occurring in the
acoustic tests. Deviations in data introduced by the slight Reynolds
number variation of the acoustic tests are considered to be of second
order.

MEASUREMENTS

The primary data obtained in thls experimental investigation is
the magnitude of wall pressure fluctuations as a function of frequency
for various types of turbulent boundary layers. Measurements were
limited to the frequency range 32 £r< 88,000 cps. Results are pre-
sented and discussed for the zero pressure gradient or flat plate
turbulent boundary layer on an insulated wall in the range of free
stream Mach numbers 0.43 <M < 3.46 and Reynolds numbers based on momen-
tum thickness and free stream conditions in the range 14 x 103 < Rg < 50
x 103. At one representative supersonic Mach number, Mach 3.46, the
effects of various strengths of shock and expansion waves impinging on
the boundary layer, surface roughness and favorable and adverse
pressure gradients on the magnitude of wall pressure fluctuation are
presented.

Boundary Layer Characteristics

To be useful for design purposes, wall pressure fluctuations ideal-
ly should be related to sultable characteristics of the turbulent
boundary layer which can be calé¢ulated or estimated by conventional
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boundary layer theory. In the present experiments, the boundary layer
velocity profile was measured at a single station on the sidewall at
all test Mach numbers. This station was located four (4) inches ahead
of the centerline of the instrumented sidewall insert and corresponded
to microphone position #. (See Figure 7).

Non-dimensional velocity profiles are shown in Figure 12. Using
the data reduction procedure presented in Appendix A, boundary layer
total thickness, displacement thickness, momentum thickness, and skin
frietion coefficient have been calculated from the measured velocity
profile. These boundary layer characteristics are presented in Figure
13 as a function of free stream Mach number and are tabulated in
Table 1.

For the zero pressure gradient cases, estimates of boundary layer
characteristics at stations upstream or downstream of the measurement
station may be made using the assumption that the velocity profile
shape parameter, H, remains constant and determining the change in
momentum thickness from the momentum integral equation (ref. 24).

2 = et/ (1)

Estimated boundary layer characteristics at microphone position #1
(station +6.625) using this procedure are tabulated in Table 2.

No attempts were made in the present study to measure detailed
boundary layer velocity profiles for cases where the base or clear
tunnel boundary layer was disturbed by shock impingement, favorable or
adverse pressure gradients, and surface roughness. Instead, the
pressure fluctuation measurements for these cases have been referred
to the boundary layer characteristics in the undisturbed flow ahead of
the shock or roughness element.

Mach Number Effect

Mach number and static pressure distributions along the instrument-
ed sidewall insert are presented in Figure 14 (A-H) while wall pressure
fluctuation levels as a function of frequency are presented in Figures
15 to 21 inclusive. The study of these data indicates three separate
phenomena. At each Mach number there are a group of data points which
define a straight line with a rise of three decibels (3db) per octave,
indicating a constant spectrum above a certain frequency, up to the
highest measured (88kcps). At Mach numbers M = 0.43, 2.52, and 3.46,
all microphones indicate this constant spectrum characteristic irrespec-
tive of microphone position along the plate.



The flat spectrum holds for all frequency bands measured except
for those below 1000 cps at Mach 0.43, where a relative maximum is
evident at about the 100 cps band. This same relative maximum appears
at Mach numbers M = 0.59, 0.86, 1.41, and 1.80. Also at Mach numbers
M = 0.59, 0.86, and 1.41, and 1.80, a second group of data points
indicate a pressure fluctuation level well above that corresponding
to a flat spectrum for frequencies between the 250-cps octave band and
the 8000-cps band. These points are most praminent at Mach 1.41. How-
ever, at these Mach numbers, the spectrum is again flat at frequencies
above 10 k cps.

For later convenience, these observed phencmena are summarized
as follows:

Phenocmenon "a" - linear slope with 3 db rise per octave

Phenomenon "b" - elevated fluctuation levels between .25 and
8.0 keps

Phenamenon "e¢" - relative maximum below 0.25 kcps

The deta presented in Figures 15 through 21 were obtained during
three separate series of tests in November, 1962 and January and March,
1963. In each test series, measurements were made at all Mach numbers
noted gbove. In each series, at Mach numbers between 0.59 and 1.80,
all three phenamena were measured whereas at other Mach numbers

phencmenon "a" predaminated. Thus at Mach 1.41 for tests conducted in
November, microphone position #1 showed phenomenon "a" and microphone
position #5 showed phenamenon "b". In the March tests at Mach 1.b1,
microphone position #1 showed phenamenon "b" and microphone position

#5 showed phencmenon "a"., The above measurements were repeated in each
test series with results found to be repeatable within t 1 dv as shown
in Figure 18. Thus, no interchange of phenamena "a" and "b" at any
given microphone location during a single serles of runs was ever
observed. No explanation for phencmena "b'" and "c¢" may be offered at
this time. It should be pointed out that they are not in conflict with
the work of other lnvestigators, however, since they occur in a
frequency range below that generally investigated and where available
data has been considered uncertain. Socme speculations regarding their

origin are presented in "Discussion”.

At Mach 3.46, the data of Figure 21 clearly indicate a flat spec-
trum over the entire frequency range for which measurements were made.
The scatter in pressure fluctuation level as measured at six different
microphone positions (including #11 which is located 4 inches below
the sidewall centerline) and several repeat runs is on the order of
t 3 db at any given frequency. Some of this scatter may be associated
with the change in boundary layer characteristics resulting from the



change in Reynolds number corresponding to the various nmicrophone
locations.

Effects of Shock Wave Impingement

Based on the work of Ribner (ref. 27) it is expected that impinge-
ment of a shock wave on the turbulent boundary layer should bring about
a marked increase in the surface pressure fluctuation level which is
due to the interaction of vorticity and entropy spottiness with the
shock wave. In order to determine whether such increases do occur,
several shock waves with flow deflection angles, B, between 0° and 10°
were impinged on the sidewall boundary layer at M = 3.46. Detailed
pressure distributions in the region of shock boundary layer interaction
exhibit the well known (refs. 28 and 29) steep, unbroken wall pressure
gradient over a distance of 20 for weak shock angles ( 8 < 2.5°); and
the occurrence of a pressure "plateau" for B = 5° which increases in
extent for B = 7.59 to indicate incipient separation. At B = 109,
the shock strength wes so large that the channel between the generator
and the sidewall was probably choked as the result of the strong shock
and the reduced area ratio between the base of the generator and its
leading edge. Qualitative wall static pressure distributions for
various shock angles are presented in Figure 22. The data for B=0°
indicate that in this configuration there was actually a weak shock of
1/2° deflection angle impinging on the sidewall boundary layer.

The effects of shock angle on the fluctuating pressure level
spectra at several microphone locations are shown in Figures 23 through
25. The shock generator reference angle B was set at 0°, 5.0°, and
7.50. For convenience the theoretical point of impingement of the
shock and the region of expansion is given schematically in the upper
left-hand corner along with the microphone locations. In all three cases
the spectrum measured at microphone position #1 is the same as for a
clear tunnel. However, the data indicate that the effect downstream
of the shock is quite pronounced.

Figure 23 presents the acoustic data for a shock generator angle
of 0°. The presence of phenomenon "b" in addition to phenomenon "a”
is indicated by the spread of the data points at frequencies below 10
kcps. Presumably this is due to the bresence of the weak shock wave,

(approximately 0.5°).

In Figure 24 are shown the results of runs conducted in January
and in March for a shock generator angle of 5.0°, In both cases the
bressure fluctuation levels are greatly increased downstream of the
point of shock impingement, but the data are not as repeatable as
might be desired. This result may be due to a slight variation in
the shock generator angle in the two runs. In one test the levels in



the area of microphone position #3, #+, and #5 were raised above the
clear tunnel levels by 15 db, while in the other test the levels in this
reglon were raised 10 db. In both cases the levels at microphone posi-
tion #8 were lower than those at positions #3, #4, and #5 but higher
than those at microphone position #1 which gives clear tunnel levels.

In Figure 25 are shown the results of runs conducted in January
and in March for a shock angle of 7.5°. The results are much the same
as for the 5° shock angle case except that the levels in the vicinity
of microphone positions #3, #4, and #5 were raised about 24 db above
clear~-tunnel levels.

The microphone at position # was always downstream of the shock
wave and as shown above, the levels measured there were similar to the
levels measured at microphone positions #3 and #5. We may infer from
this that the pressure fluctuation levels downstream of the shock are
not strongly dependent upon distance from the shock in the region of
the steep pressure rise, but are strongly dependent upon the shock
strength as shown in Figure 26 where the pressure fluctuation levels
measured at microphone position #i have been plotted for several angles
B of the shock generator. Clear-tunnel measurements have also been
included for comparison. The data for B - 10° are shown (although
the tunnel was probably choked, as noted above) to allow comparison of
levels in both separated and unseparated flows.

Effect of Pressure Gradients

The effects of pressure gradient on wall pressure fluctuation were
studied briefly at Mach 3.46. Favorable pressure gradients were
obtained by simply rotating the shock generator until an expansion took
place. The static pressure and Mach number distributions are shown in
Figure 27. The adverse gradient was obtained by designing a curved
surface in an attempt to obtain a constant gradient at the wall. As
shown in Figure 28, the gradient was much steeper and was located
further downstream than desired.

The acoustic spectra for the favorable gradients are shown in
Figure 29 and 30 while Figure 31 is a favorable gradient summary at
microphone position.#h- The data in Figure 31 for V = O are identical
with the data in Figure 23 for B = 0 and differ from the clear tunnel
data at the same microphone positions because of the presence of a mild
shock for B =V = 0. Figure 30 for ¥ = 5° reveals a curious corre-
spondence when compared with Figure 24, the spectra for g= 59,
Although microphone #1 (Figure 30) is located at the beginning of the
influence region of the expansion, its datea are almost identical to
the data for B= 5°, which in turn reflect the clear-tunnel levels
shown in Figure 21. Data from microphones #3, #4, and #5 are nearly



the same for both V= 5° and B - 59, particularly at the higher fre-
quencies. In the frequency range 0.125-4.0 kcps there are some devia-
tions, although these do not generally exceed 3.5 - 4.0 db. Data at
microphone #8 are the only ones to indicate a difference. For the case
of B = 50 microphone #8 is at the beginning of the expansion region
from the end of the wedge (Figure 22) and the acoustic 1levels are
some 4-5 db lower than the average for microphones #3, #, and #5 but
are still much higher than for clear-tunnel. For the expansion case,

V= 50, the data show lower than clear-tunnel levels, the only
condition in the entire investigation that has produced values below
the basic clear-tunnel levels.

The acoustic spectra for the adverse pressure gradient are shown
in Figure 32. As can be seen from Figure 28, microphones #1, #3, i,
and #5 were essentially at clear-tunnel conditions and only microphone
#3 was in a disturbed region. Strangely, the pressure fluctuations at
microphone #3 (Figure 32) differ very little from clear-tunnel levels
despite the fact that the microphone is located at the very peak
pressure. This result may be due to the fact that precisely at that
location the adverse gradient meets a favorable gradient resulting from
the expansion at the base of the generator. Clearly, additional inves-
tigating of the effects of adverse pressure gradients is required.

Effects of Surface Roughness

In describing the aerodynamic effects which are due to the two-
dimensional roughness elements tested in this investigation, it can be
stated that conditions upstream are analagousto those with a forward-
facing step. Conversely, conditions downstream are those for a rear-
ward-facing step. Considerable background material exists concerning
the fluid mechanic effects of steps (refs. 30-34) although most investi-
gators have reported on flows over steps that are large compared to the
boundary layer thickness. In the case described herein, the steps
range in height from 0.0178 to 0.178 at M = 3.46 (nominal). Figure 33
(a) presents the pressure and Mach number distributions for the four
roughness thicknesses investigated and Figure 33 (b) compares the
distributions for a 0.125-inch strip with blunt or rounded leading
edges. While the pressure orifices were not sufficiently dense to
describe the flow in detail, the measurements show the approximate
pressure levels and gradients at the various microphone locations. It
can be seen that there is little difference between the upstream effects
for the two smallest strips but in the region immediately downstream
the differences for all four strips are distinguishable.

Although the static pressures at microphone positions #1 and #3
show an effect of roughness for all thicknesses, no appreciable effect
on local pressure fluctuations was observed (Figure 34) up to t = 0.025".



A large effect was noted for the 0.050-inch roughness as is shown in
Figure 35. The downstream levels are all raised roughly 6 db above
clear-tunnel levels and the upstream levels (at microphone #1) are
increased up to 20 db below the 16 kcps octave band. In addition, the
upstream levels exhibit the behavior of clear-tunnel phenomenon "b”".

The levels were increased still further with a 0.125-inch rough-

ness, Figure 36. The pressure fluctuation levels at microphone positions

#i and #8 are up 10 db above clear-tunnel levels. The levels at micro-
phones #1 and #5 are similar to each other and show the phenomenon "b"

behavior, indicating as much as 20 db above clear-tunnel levels in the

lower frequency range.

Figures37 and 38 summarize the effects just upstream (microphone
#1) and downstream (microphone #3) of the roughness and compare them
to the clear-tunnel levels. For microphone #3, clear-tunnel levels
have been estimated fram the data of microphone #1.

The effect of rounding the leading edge of the 0.125-inch strip
was not conclusive (Figures 37 and-38), although the levels upstream
appear to be slightly lower than for the blunt strip.

Figures 39 and 4O present static pressure and fluctuating pressure
data, respectively, for a simulated half-scale window at M 3.46. The
spacing of pressure orifices is limited but microphones #1, #7, and #3
are seen to be in relatively undisturbed regions. Microphone #1
(not shown), might be considered to be influenced by the simwlated
window, being about 1-1/2 inches below it and nearly 2 inches behind
the leading edge. The fluctuating pressures (Figure L0O) at microphone
#1 are indeed unaffected but microphones #7 and #3 give levels 5-6 db
above clear-tunnel levels. Microphone #l1 once again exhibits the
phenomenon "b" effects at frequencies of 2 keps and lower.

DISCUSSION

It is of interest to compare the present results with previous
measurements of wall pressure fluctuations. Perhaps the most camplete
measurements are those of Willmarth {ref. 38) at subsonic speeds. His
results at speeds of 206 ft/sec show a spectrum which is almost flat to

fé*/u“)= 0.5 and a measured overall fluctuation level ofV p2/'rO = Z.2

compared to hils previous measurements ofJA§2/1- = 2.3 to 2.5 (ref. 11).
When corrections to Willmarth's measurements arg made for transducer
size in accordance with Corcos' technique (ref. 25), the resulting
overall values are\; 2 + . = 3.5. In order to compare these results
with our measurements, it~ is necessary to detemmine the contribution

to the overall level of fluctuations contained in the frequency range

15
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up to f&*/uub = 0,45, the range of frequency covered by our measurements
at M = 0.43, If this contribution is defined as & truncated mean square

pressure, ¢é;T’ the resulting valve from ref. 38 is Véii/ T, = 1.9, when

transducer size corrections are included. Our measured spectrum at
M = .43, shown in Figure 15, has been integrated over the frequency

range 0 £ £ Uk keps, ylelding \/Epz r =2.8 and \/Apg q = 7.5 x 1073,
(]

Thus reasonable agreement with Willmarth's subsonic measurement is
exhibited.

At supersonic speeds, the only detailed measurements of spectra
which have been reported to date are those of Kistler and Chen (ref. 1k).
They showed that their spectra could be brought into coincidence,
independent of Mach number in the range between M = 1.33 and M = 5, by
use of frequency in the non-dimensional form, fG/uw. Likewise they
showed that their measured values of overall fluctuation level were
almost independent of Mach number above M = 2 . Thus according to
their measurements, they found

N . 1_29 ©
2 J[ o U o j'Fu‘n £
= F(f)df = d(— 2
p o (f) o ol T2, (=) (2)

o]

where the value of the integral is approximately 25. Hence,

2 . (3)
or ~>
V=5 Y_zzo M2 ¢ (4)

Equation (4) exhibits the dependence of the root-mean-square
pressure fluctuation on skin friction coefficient, static pressure and
Mach number, when contributions from all portions of the spectrum are
present. Thus, the measurements of Kistler and Chen indicate that the

quantityvﬁi / TS increases fram about 3 at subsonic speeds to about 5
at supersonic speeds.

A direct comparison of the present data with the measurements of
Willmarth and Kistler and Chen is shown in Figure 44. Reasonable agree-
ment is exhibited at subsonic speeds. The transducer size correction
contained in our data accounts for the deviation from Willmerth's curve
at the higher frequencies since this correction is not included in his
data. Our data falls below the previous supersonic measurements.



However, the numerous transducers and test series represented by the
current measurements and the knowledge that they are free from vibration
effects lends credence to the present results.,

For some applications the contributions to\/-;-2 from limited fre-
quency intervals of the spectrum may be of interest e.g. in a measure-
ment in which there is a frequency cut-off, fc, imposed by instrumenta-
tion limitations. Similarly, the response of a structure may be negli-
gible beyond some cut-off frequency, fe. In such cases, we define a
truncated mean square pressure,

~A fc

bpy, = /o F(f)df (5)

For measurements, fc is chosenso that the portion of the spectrum
from O to fc 1is practically flat, as indicated by the spectra shown in
Figures 15 to 21. Then,

729 F u 2
5@; =F fo = 2 9% fe = const -2 rc (6)
o] uw -1-20 ueo
(o]

where F_ is the value of the spectral function in the flat portion.
Since

U= a, Mg (7)

o0

Equation (6) yields

Yp £ e
Vwp -k = om, 3P o [ (8)

Based on the present measurements, the velue of the constant K has been
determined to be approximately

K = 3.6 (9)

as shown in Figure 43. The data points shown in Figure 43 were obtain-
ed by integrating the spectra of Figures 15-21. In performing this
integration, phenomena "b" and "c" have been neglected since phenomena
"a" predominates in all cases at frequencies above 10 kecps. Since both
the subsonic and supersonic data of the present study can be correlated
with a single value of K, our results tend to indicate a relationsnip
between wall pressure fluctuation level and skin friction which is
independent of Mach number. Of course, our measurements are limited

to f - 88 keps so that significant contributions to overall fluctuation
level may exist at higher frequencies which could alter this conelusion.
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At Mach 3.&6, the influence of various types of disturbances to
the boundary layer on the megnitude of wall pressure fluctuation level
are sumarized in Table 3. As indicated therein, shock waves impinging
on the boundary layer produce increases in pressure fluctuation levels
as great as twenty (20) times the undisturbed case. Within the
limited frequency range of the measurements, the spectra agesin are flat,

as shown in Figure 26. The values of VApS shown in Table 3 for shock
impingement were obtained by the integratiofi of these spectra.

Favorable gradients were generated by a Prandtl-Meyer expansion of

= 2,5° and V= 5° In one case ( V= 2.5°), this favorable gradient
had little influence on magnitude of wall pressure fluctuation level,

whereas, in the other case { V¥ = 5°) it increased the level by a factor
of five .above the undisturbed case. The increase in local skin fric-
tion accompanying the favorable pressure gradient was not determined.

The adverse gradient of .96 psi/in produced no measurable change
in the magnitude of wall pressure fluctuation level. In these tests,
however, the microphone locations with respect to the pressure distri-
butions were not optimal. Hence, the effects of favorable and adverse
pressure gradient at Mach 3.46 from the present study must be consider-
ed inconclusive.

The influence of two-dimensional, square-edge, roughness elements
on wall pressure fluctuations are found to be appreciasble as shown in
Table 3. These elements increase the level of pressure fluctuations
at’a location ahead of the elements (element downstream) by a factor of
six compared with the undisturbed case. This is shown by the measure-
ments presented in Figure 37 for cases where the element is large
enough Iin height to ensure that the nommal shock ahead of the element
is upstream of the fixed microphone position #1 (t 2 0.05"). Likewise,
the level downstream of the element is increased by as much as a
factor of five above clear-tunnel values.

In addition to the change in fluctuation level, the roughness ele-
ments modify the spectrum of the pressure so as to increase the fluctua-
tion level at intermediate frequencies. Thus it may be speculated that
the appearance of increased levels in the middle frequency range for
the undisturbed boundary layer, as shown in Figure 18 for Mach 1.4,
magy be the manifestation of a relatively small local flow disturbance
arising fram some change in tunnel configuration between the three
test serles. The increase in levels over the entire frequency range
measured, shown in Figures 24 and 25 for shock angles B= 5% and 7.5°



and in Figure 30 for v = 50, may be the manifestation of & relatively
larger flow disturbance. In these latter cases, the larger flow disturb-
ance may glve rise to level increases over & broader frequency range,

and these appear as uniform level increases in the present measurements.

In terms of conditions which may be encountered in flight at Mach
3.5 at 60,000 ft. altitude, the results of this study indicate that
thin turbulent boundary layers on insulated surfaces (Rg = 50,000, cf-

= 0.0011) will generate pressure flpctuation levels of magnitude Api’?
.015 1bs/in2 in the frequency range f < 88 kcps. However, in the
neighborhood of surface roughness elements or impinging shock waves,

the pressure fluctuation levels increase to Apg 270.10 and‘92§§”= 0.20
1bs/in“ respectively.

CONCLUDING REMARKS

Results of the present experimental investigation of turbulent
boundary layer wall pressure fluctuations lead to the following
conclusions:

1. The modification of the blowdown wind tunnel, enabling operation
with stagnation pressure equal to reservoir pressure, produced a
facility which has satisfactory characteristics (Low background
noise level)to enable boundary layer nolse to be measured over the
Mach range 0.4 < M S 3.5 in a single experimental arrangement.

5. Measurements under the zero-pressure gradient boundary layer are
in agreement with other results at subsonic speeds and indicate a
pressure spectrum which is flat to values of non-dimensional

frequency £&*%/u_= 0.45 and a truncated fluctuation level of
Api, /1'0 ~2.8 for £ < 4b keps.

3. Zero-pressure gradient results at supersonic speeds show pressure
spectra wnich are flat to £fO/u,= .15 and truncated

fluctuation levels of Véie T, = 1.2 to 1.7 for £ < 88 keps, a
frequency range to which Practical vehicle structure can respond.

4. Measurements of the influence of favorable and adverse pressure
gradients on wall pressure fluctuation levels at Mach 2.46 are in-
clusive.

5. At Mach 3.46, impingement of shock waves on the turbulent boundary
layer can increase the pressure fluctuation level by a factor of
twenty (20) above the undisturbed case.



6. At Mach 3.46, two-dimensional, square-edge roughness elements
increase pressure fluctuation levels by a factor of five or six
above the undisturbed boundary layer levels.



APPENDIX A - BOUNDARY LAYER DATA REDUCTION PROCEDURES

The characteristics of the turbulent boundary leyer on the sidewall
were determined by measurement of the total pressure profile and the
local wall static pressure. Veloclty ratio, u/u , was calculated from
these measurements using the Rayleigh pitot formila. The Crocco rela-
tionship between velocity and temperature was used to define a mean
temperature profile. Since measurements of wall temperature showed
that the mean wall temperature during a 10-15 second run was equal to
stagnation temperature, this relatlonship is simplified to:

Tth

o - (T - 1) () (A1)

Using the normal boundary layer assumptions p = p (x) and the perfect
gas equation of state, the following expression for density profile is
obtained:

Te

o T 2
o T Ty (T - TIE)

(A2)

From the velocity and density profiles, the turbulent boundary layer
thickness, displacement thickness, and momentum thickness were evaluated
by use of the followling equations:

y = & when u/ue = .99 (A3)
v = [ (1- pule  u) d (Ak)
o= [Pu(nyg (45)
< pou u >

e e e
H = 8%/0 (46)

Values of skin friction coefficient were determined by use of
Eckert's reference enthalpy method (ref. 36) which relates the
campressible flow skin friction coefficient to the incampressible
coefficient by the equation

L @yE (AyE (47)

ef, 0 H o
i
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where the incompressible coefficient is given by Falkner (ref. 37)

Cfi _ 0.006534
2 1/6

R

In the above,

and

. T
e _ = _ i

=2 - .
P T Bt Lo oo r L2, 20,
_ﬂ, B (T' )3/2 T, + 200
“_ A T+ 200

The turbulent recovery factor is

Values of ©, &%, 9, ¢
tabulated in Table 1 for each Mach number.

r= (Pr‘)l/3

£ Cry

(A8)

(49)

(a10)

(A11)

and To based on the above relations are

All measurements of velocity

profiles were limited to clear-tunnel configurations at a station &4

inches upstream of the sidewall center line, i.e., no measurements were
attempted downstream of roughness elements or shock boundary interaction

regions.
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APPENDIX B

INFORMATION ON ACOUSTIC INSTRUMENTATION AND PROCEDURES

The acoustic transducer used to measure boundary layer pressure
fluctuations was the Bruel and Kjaer Model 4136 condenser microphone.
With the protective grid removed, the microphone can be mounted in a
flat plate with the outer surface of the diaphragm flush with the plate
surface.

The microphones were installed utilizing compressed O-rings to
hold them in place and also to provide an adeqguate seal. Using an
opaque thin straight edge in conjunction with a concentrated light
source, 1t was possible to align the surface of the diaphragm with the
surface of the plate to within ¥ 0.0005 inch.

A small annuler gap existed between the edge of the diaphragm and
the plate. In the earlier wind tunnel runs, lacquer was used as a
filler to provide a completely smocth surface fram the edge of the
plate mounting hole to the diaphragm. Identical wind tunnel runs
were made with and without the gap filled with lacquer. Because the
noise spectra measured without the lacquer were indistinguishable
from those measured with the lacquer, the use of lacquer was discarded
in the later wind tunnel runs.

In the microphone installation, provision was made for static
pressure equalization between the front and the back of the microphone
diaphragm by means of a small air passage. In order that equilibrium
be maintained across the diaphragm, it was necessary to seal carefully
all possible leaks to the outside of the wind tunnel. After some of
the earlier wind tunnel runs, it was discovered that some of these
seals may not have been airtight, thereby leading to a static pressure
differential across the diaphragm and a consequent reduction in
microphone sensitivity. Data affected by the apparent lack of pressure
equalization are considered suspect and are not presented in this
report.

A special low-noise cable adapter developed by Bolt Beranek and
Newman, Inc. was used to connect the microphone output to the input of
a suitable cathode follower. The cable adapter serves as a mechanical
isolator between the microphone and the cathode follower. When the
microphone is subjected to 1 g rms, the equivalent sound pressure level
at the cathode follower output is 85 db re 0.0002 microbar. By compari-
son, the use of a standard rigid adapter can exhibit an equlvalent
sound pressure level as high as 145 db under similar conditions. The
special sdapter introduces an overall loss in sensitivity which is 3 db

23
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greater than the standard rigid adapter. The microphone sensitivity
with the special adapter is -83 db re 1 volt/microbar measured at the
cathode follower output.

During several of the tests, the signal from a calibrated accel-~
erometer fastened directly to the test plate (see figure 7) was
recorded, to permit calculation of the vibration-induced signal of the
acoustic transducer. Acceleration measurements at a Mach number of
0.86 indicated that the equivalent sound pressure level resulting from
microphone vibration sensitivity was a maximum of 65 db, in the octave
band centered at 500 cps. A review of the acoustic and vibration data
indicated a minimal signal-to-noise ratio of 45 db was due to vibration
sensitivity. Thus there was no need for vibration isolation of the
instrumented insert from the remainder of the tunnel.

For linear reproduction of signal voltages in the desired ampli-
tude and frequency range, the total load impedance seen by the cathode
follower output must be greater than 5 x 10™ ohms. For this reason,
cables utilized in this part of the system were kept under a maximum
length of 10 feet.

The microphones were acoustically calibraeted by means of a Bruel
and Kjaer Model 4220 pistonphone used in conjunction with a BBN acoustic
coupler. This combination provided a reference sound pressure level
of 128 db, accurate to * 0.2 db, at 250 cps. Calibration levels were
noted and recorded on tape at periodic intervals throughout the series
of noise measurements.

As mentioned in the body of this report, during the first series
of tests the data signals were recorded in the wide band FM mode of a
Precision Instruments tape recorder using a 54 kcps carrier frequency,
t 40% record bandedge, and 60 in/sec tape speed. During the final
series of tests, the signals were direct recorded on a Mincom tape
recorder at 60 in/sec tape speed.

System record and playback corrections were determined by record-
ing sinusoidal signals on the data channels and playing these signals
back through the data processing system. This process was of particu-
lar importance in the reduction of the direct record data since in this
case the tape recorder playback amplifier with its playback head
compensating network was circumvented to reduce electrical noise. Also,
the graphic level recorder, used as a read-out device for the first
series of data, does not give a true mmms output for a random noilse
input. The level recorder was suitably calibrated to generate an
appropriate correction to adjust the readings to true rms values.
Typical values of the system corrections are given in Table 4.



A sample of the system nolse floor was also recorded, analyzed,
and compared with the data., No data that are limited by the system
noise floor have been presented in this report. At reduced ambient
pressures, the Bruel and Kjaer Model 4136 condenser microphone exhibits
a resonance around 48 kcps. During the wind tunnel tests the micro-
phones were exposed to static pressures over the range of 0.5 to 18
lbs/in2 absolute. It was necessary, therefore, tc calibrate the micro-
phone over this range of pressures, and apply a correction for the
changes in microphone sensitivity. The pressure sensitivity of the
condenser microphones was obtained by the use of a Bruel and Kjar Model
4iko electrostatic driver. The microphone and driver were placed in a
sealed chamber, and the microphone was calibrated over a range of
static pressure fram 0.1 psia to 20 psia. A sinusoidal signel was
used to obtain the frequency response from 0.1 kcps to 100 keps, and
a constant-spectrum-level random noise signal was used to obtain the
frequency response in the three octave bands centered at 16, 31.5, and
63 keps. A typical set of response curves generated with the sinusoidal
excitation is given in Figure 41, and a typical set of corrections for
one microphone is given in Table k.

The acoustic data were also corrected for the finite size of the
microphone diaphragm. Like the pressure sensitivity correction
mentioned above, the finite size correction was of importance only in
the octave bands above S keps. A set of the finite size corrections
for a particular Mach number is also given in Table 4.

The finite size correction is based on the work of Corcos (ref. 25).
He has calculated the reduction in pressure fluctuation spectrum that
is due to the finite dimension of the measuring transducer. The
correction is expressible in terms of the dimensionless gquantity of
fL/uc, where f is freguency, L is & characteristic dimension of a
uniformly sensitive transducer, and uc is the turbulence convection
speed. For comvenience we have replotted Corcos' results for a round
transducer in Figure 42, where it has been assumed that the convection
velocity, uc, is 0.8 of the free stream velocity, ue . This result is
approximately valid through the entire frequency range of concern in
the present investigation. Corrections based on Figure 42 have been
applied to all of the data in the present test. An effective trans-
ducer diameter of 0.13 inch has been used to generate these corrections.
The justification for this choice of diameter is given in Appendix C.

The Corcos length correction utilizes measured values of the one-
dimensional longitudinal and lateral cross-spectral densities. In
order to determine whether the Corcos correction, which is based on
subsonic data, is valid for supersonic data also, it is of interest to
inquire whether the eddy size at supersonic Mach numbers is the same
(on a non-dimensional basis) as the eddy size at subsonic Mach numbers.
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Comparison of Figure 1L4b of Kisler and Chen (ref. 14) with Figure 11 of
Willmarth (1962) (ref. 38) indicates that the eddy size in supersonic
flow is considerably larger than in subsonic flow. In this case the
Corcos correction would be ton large for supersonic flow because less
cancellation would occur when a larger eddy passes over the transducer
face than when a smaller one passes. A quantitative evaluation of this
reduction requires the measurement of cross-spectral densities in
supersonic flow.

The overall uncertainty of the measurements is ¥ 1 db at center-
band frequencies of 16 keps and below and * 3 db in the 31.5 keps band.
The data in the 63 keps band is questionable and its accuracy is not
easily determinable.



APPENDIX C

ESTIMATE OF THE EFFECTIVE DIAMETER OF THE CONDENSER
MICROPHONE

The Bruel and Kjaer Model 4136 condenser microphone used to meas-
ure the boundary layer pressure fluctuations has an overall nominal
diameter of 0.250 inch. The diaphragm of this microphone is essential-
ly a stretched and clamped membrane with a geametric diameter of 0.170
inch. As would be expected with a clamped membrane, the microphone
diaphragm is more sensitive at its center than at its edges. The finite
size correction (see Appendix B) assumes that the microphone diasphragm
has uniform sensitivity. Since our microphone does not have uniform
sensitivity, 1t is necessary to determine the diameter of an equivalent
microphone in order to apply the finite size correction. It is thus
necessary for us to formulate a definition of equivalence and then to
calculate the diameter of an equivalent uniformly sensitive microphone.

The problem of the microphone diameter beccomes of importance only
when the wave length of the sound measured becomes camparable to the
microphone diameter. For a grazing incidence plane progressive sound
field, a wavelength will exist for which the surface integral of
pressure times diaphragm sensitivity will be zero; that is, the micro-

phone output signal will be zero as the wave propagates by the diaphragm.

It is proposed that the diameters of two transducers be defined as
equivalent when at the same frequency they both give zero output signal
for a plane progressive sound wave of grazing incidence.

We shall assume that the dlaphragm of our microphone has a circu-
lar boundary of diameter D with its center at the origin of a cartesian
reference frame. We shall suppose that we have a plane progressive
wave of wavelength A traveling at grazing incidence across the diaphragm
in the direction of the ordinate and that the sensitivity of the
diaphragm is solely a function of the distance from its center. Our
Job then 1is to evaluate the following integral:

V= /1; P, cos [(wt - 2—;X o(R)|da

v

an \ . en
/‘,_; Po o(R) [coswt cos Tx+ sin wt s;,n—?\-zda

The second term i1s an odd function and thus clearly the integral is zero.

./ oy
v A PO o (R) coswt cos =+ da
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Thus we need determine D so that
= eny
o] [A o(R) cos oY da

We introduce polar coordinates, R and 1 ’

0= LD/E /02,1 o(R) cos (2B sin Y ) R4R a¥

Py
0= /OD/2 /02“ o (R) [Jo @%‘\R_+ 23, (E;R Jeos 2¥. .. |RARA ¥

The integrals with respect to ¥ of all of the terms except the first
are zero. Thus the above becomes

0 = /OD/2 o(R) T (E;R) Rd R (c1)

In order to evaluate the sensitivity function ¢ (R) for the Bruel and
KJjaer microphone type hl36, we make use of measurements made of this
quantity on a model of a large Bruel and Kjaer microphone type 4131.
Bruel and Kjaer show that just below the resonant frequency of the
microphone the sensitivity near the edge of the diaphragm is down 20
decibels below the sensitivity at the center (ref. 39) Using this
information we propose the following empirical formula for ¢ (R).

R 2
o(®) = o, [1-v (7], v-09 (ce)
If we substitute equation (C2) in equation (Cl) and integrate we obtain
- D 1Dye D xD
o=5 ) [a-v) E2+m| D)5 D) (c3)

If we substitute the empirical value for b of 0.9 and solve for the
first significant root of equation (C3) we obtain

D _
%= b8y (Ck)

In order to determine the diameter of a uniformly sensitive equivalent
diaphregm we set b = 0 in equation (C3) and obtein

D
J n—7\‘3) =0 (c5)



The first significant root of equation (C5) gives

nD
= = 3.83 (ce)
We determine the equivelent diameter from equations (Chi) and (C6).

D = ,170 x E—% = .133 inches

e
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TABLE 3
INFLUENCE OF VARIOUS DISTURBANCES ON

WALL PRESSURE FLUCTUATION LEVEL AT M = 3.46

Ry = 50,000
Type of Disturbance x 10 Ty
No disturbance 1.8 1.7
1/2° Deflection Shock 2.7 2.4
2.5° Deflection Shock 4.3 3.9
5° Deflection Shock 9.6 8.7
7.5° Deflection Shock 23.3 21.2
Normal Shock 37.2 33.8
dp/dx = ~-.19 psi/inch 10.7 9.7
dp/dx = + .96 psi/inch 1.8 1.7
t = .125" Downstream 12.0 10.9
t = .125" Upstream 10.5 9.5




TABLE 4

EXAMPLE OF CORRECTIONS APPLIED TO RAW DATA

Pogsitive numbers represent additions to raw data values.

Typical direct record corrections*

WBFM System Pressure- Finite
Octave Band Center|Corrections, System dependence Size
Frequency, keps All Data, Corrections,| Corrections,|Corrections

db db db db
0.016 +6 0 0
0.0315 +h 0 0
0.063 +3.5 0 0
0.125 3.5 5.5 0 0
0.250 2.5 0.C 0 0
0.500 2.5 -5.0 0 0
1.00 1.5 -3.5 0 0
2.00 1.0 -14.5 0 0
4.00 0.5 -20.0 0 0
8.00 0.5 -23.0 0 0]
16.00 -25.0 1 1
31.5 -22.0 =7 2
63.0 -18.5 -10 L

*microphone serial number 77315, wall static pressure 2.58 psia, data

track 2-loop track 1.
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FIGURE 27- VARIATION OF STATIC PRESSURE AND MACH NUMBER WITH DISTANCE ALONG
THE SIDEWALL CENTERLINE IN THE PRESENCE OF AN EXPANSION AT M - 3.46

(ILLUSTRATION INDICATES THE EXPANSION LOCATION AT .- - §°)
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